BIT (dígito binario) : Un bit es un dígito del sistema de numeración binario. En el sistema binario sólo se usan dos dígitos el 0 y el 1.El bit es la unidad mínima de información empleada en informática, en cualquier dispositivo digital, o en la teoría de la información.
COMBINACIÓN DE BITS: Con un bit podemos representar solamente dos valores, que suelen representarse como 0, 1. Para representar o codificar más información en un dispositivo digital, necesitamos una mayor cantidad de bits.
Bits más y menos significativos: Un conjunto de bits, como por ejemplo un byte, representa un conjunto de elementos ordenados. Se llama bit más significativo (MSB) al bit que tiene un mayor peso (mayor valor) dentro del conjunto, análogamente, se llama bit menos significativo (LSB) al bit que tiene un menor peso dentro del conjunto.
Sistema binario: en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno (0 y 1). Es el que se utiliza en las computadoras, pues trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
Representación: Un número binario puede ser representado por cualquier secuencia de bits (dígitos binarios), que suelen representar cualquier mecanismo capaz de estar en dos estados mutuamente excluyentes. Las siguientes secuencias de símbolos podrían ser interpretadas como el mismo valor numérico binario: 1 0 1 0 0 1 1 0 1 0 | - | - - | | - | - x o x o o x x o x o y n y n n y y n y n
- Decimal a binario: se divide el número del sistema decimal entre 2, cuyo resultado entero se vuelve a dividir entre 2, y así sucesivamente. Ordenados los restos, del último al primero, éste será el número binario que buscamos.
- Decimal (con decimales) a binario: para transformar un número del sistema decimal al sistema binario: 1. Se transforma la parte entera a binario. (Si la parte entera es 0 en binario será 0, si la parte entera es 1 en binario será 1, si la parte entera es 5 en binario será 101 y así sucesivamente). 2. Se sigue con la parte fraccionaria, multiplicando cada número por 2. Si el resultado obtenido es mayor o igual a 1 se anota como un uno (1) binario.
- Binario a decimal: para realizar la conversión de binario a decimal, realice lo siguiente: 1. Inicie por el lado derecho del número en binario, cada cifra se multiplica por 2 elevado a la potencia consecutiva (comenzando por la potencia 0, 20 ). 2. Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
- Binario a decimal (con parte fraccionaria binaria)
1. Inicie por el lado izquierdo (la primera cifra a la derecha de la coma), cada número multiplíquelo por 2 elevado a la potencia consecutiva a la inversa (comenzando por la potencia -1, 2-1).
2.Después de realizar cada una de las multiplicaciones, sume todas y el número resultante será el equivalente al sistema decimal.
- Suma de números binarios: las posibles combinaciones al sumar dos bits son: • 0 + 0 = 0 • 0 + 1 = 1 • 1 + 0 = 1 • 1 + 1 = 10
- Resta de números binarios: el algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia. Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes: • 0 - 0 = 0 • 1 - 0 = 1 • 1 - 1 = 0 • 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1).
- Producto de números binarios: el algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.
- División de números binarios: la división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.
Escala: en arquitectura de ordenadores, 8 bits es un adjetivo usado para describir enteros, direcciones de memoria u otras unidades de datos que comprenden hasta 8 bits de ancho, o para referirse a una arquitectura de CPU y ALU basadas en registros, bus de direcciones o bus de datos de ese ancho.
El código ASCII: es un código de caracteres basado en el alfabeto latino tal como se usa en inglés moderno y en otras lenguas occidentales. Fue creado en 1963 por el Comité Estadounidense de Estándar como una evolución de los conjuntos de códigos utilizados entonces en telegrafía.
No hay comentarios:
Publicar un comentario